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Abstract. This article provides an extension to multiparticle systems (like atoms and
molecules with many electrons) of nonperturbative results obtained previously by the authors
in collaboration with Fring on the ionization of atomic bound states under the influence of
short, ultra-intense laser pulses. We give upper and lower bounds which in particular exclude
stabilization.

1. Introduction

With the advance of modern laser technology photoionization of atoms and molecules under
the influence of short, ultra-intense fields has become the object of an intensive theoretical
discussion. Mostly, however, perturbative arguments have been used, often supported by a
computer analysis (see e.g. [1, 2] and references therein).

Within the theoretical context of a (nonrelativistic) quantum mechanical one-particle a.c.
Stark Hamiltonian in the dipole approximation (including the hydrogen atom as a particular
case) and in collaboration with Enss and Fring the authors have proposed a nonperturbative
approach [3–5]. In particular [5] provides rigorous upper and lower bounds on the ionization
of bound states.

The upper bound is valid for (classical) electric fields of short duration and whose
classical energy transfer is smaller than the classical ionization energy. The lower bound
also holds for short pulses but now the classical energy transfer has to be larger than the
classical ionization energy.

The aim of this article is to extend these one-particle results to (nonrelativistic) quantum
mechanical multiparticle systems with Coulomb interaction. The lower bound is relevant
in the context of the so-called stabilization found by the majority of the atomic-physics
community (see e.g. [1, 6] and references therein). This means that the probability of
ionization by a pulse of laser radiation, which for low intensities increases with increasing
intensity, reaches some sort of maximum at high intensities and commences to decrease.
This picture is counter-intuitive and doubts about the existence of this phenomenon have
been raised by some authors [2, 7–11], who do not find evidence for it in their numerical
calculations. Since we view this article as a companion to [5], we refer the reader to this
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266 V Kostrykin and R Schrader

article and to [12] for a detailed discussion of the relevance of our bounds to the issue of
stabilization.

The strategy of our discussion will be to separate out the centre of mass motion, which
will be nontrivial if the system is not neutral.

We will then give a definition of ionization probability for a bound state in the centre
of mass system. Strictly speaking one should actually speak of ionization-fragmentation
probability. For brevity, however, we will use the notion ionization probability, since
our definition does not yet allow for a distinction between one-electron and multi-electron
ionization nor for the fragmentation into two or more molecules nor all effects combined.
Such a discussion would require a multichannel analysis which is beyond the scope of
this work. We note that a multi-channel analysis is also necessary in (nonrelativistic)
multiparticle scattering processes and it requires sophisticated methods (see e.g. [13, 14]).
Our definition of the total ionization probability, however, allows for a discussion of gauge
invariance and we refer the reader to [5] for a general discussion and with an application to
the Stark Hamiltonian. The proof of the upper and lower bounds follows the strategy used
in [4] and [5]. The new ingredient is to extend the Kramers–Henneberger transformation
[15–17] to the multiparticle system and to show that it decomposes into a part for the centre
of mass motion and a part for the centre of mass frame. The remainder of the arguments
may then essentially be taken over from [4] and [5]. We also note that earlier the Kramers-
Henneberger relation was utilized in [18] for an analysis of three-particle quantum systems
in a periodic electric field.

The electric field is assumed to be only time-dependent and thus independent of space,
which means that we use a dipole approximation. The only other restriction on its shape is
that it vanishes unless 06 t 6 τ and that it is piecewise continuous, which means that we
allow for jumps. In particular no smooth switch on and off is required. For simplicity we
will work with linearly polarized electric fields. Our arguments can be easily adopted for a
case of circular or elliptical polarized field. Throughout we use units where ¯h = e = 1.

2. Ionization bounds for atoms and molecules

Let the molecule (atom or ion as particular cases) consist ofN nuclei with charges
Qi(1 6 i 6 N,Qi > 0 integer) and massesMi > 0, andN ′ electrons with charge
−1 and massm. In particular for an electrically neutral systemQ = ∑N

i=1Qi − N ′ = 0.
Our discussion below, however, will also cover the caseQ 6= 0.

Let x = (Ex1, ...ExN) ∈ R3N be the coordinates of the nuclei andx′ = (Ex ′
1, ...Ex ′

N ′) ∈ R3N ′

those of the electrons.
For a linearly polarized electric fieldE(t) in the z-direction the a.c. Stark Hamiltonian

is given by

H(t) = H0 + V + z · E(t)
where

z =
N∑
i=1

ziQi −
N ′∑
j=1

z′
j .

Here zi and z′
j are thez-components ofExi and Ex ′

j , respectively. AlsoH0 is the free
Hamiltonian

H0 = −
N∑
i=1

1

2Mi

1i − 1

2m

N ′∑
j=1

1′
j =

N∑
i=1

Epi2
2Mi

+
N ′∑
j=1

Epj′2
2m
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where1i(1
′
j ) is the Laplacian with respect to the variableExi(Ex ′

j ). The potentialV is
supposed to be Coulombic, i.e. of the form

V (x, x′) =
∑

16i<i ′6N

QiQi ′

|Exi − Exi ′ | −
∑
16i6N

16j6N ′

Qi

|Exi − Ex ′
j |

+
∑

16j<j ′6N ′

1

|Ex ′
j − Ex ′

j ′ | .

Instead of the two-body Coulomb potential other forms of two-body potentials may also be
considered (see e.g. [4]). We set

H = H0 + V

such thatH(t) = H + z · E(t). With M = ∑N
i=1Mi + mN ′ being the total mass of the

system, the coordinate of the centre of mass is given by

EX = 1

M

( N∑
i=1

Mi Exi +m

N ′∑
j=1

Ex ′
j

)
∈ R3.

Then

H0,cm = H0 + 1

2M
1 EX = H0 −H ′

0

is the kinetic energy in the centre of mass frame, where1 EX is the Laplace operator for the
centre of mass motion. We set

Hcm = H + 1

2M
1 EX = H −H ′

0 = H0,cm + V

and

Hcm(t) = H(t)+ 1

2M
1 EX −Q · Z · E(t) = H(t)−H ′(t)

with Z being thez-component ofEX.
These operators are supposed to act in the Hilbert spaceH ⊂ L2(R3(N+N ′)) of all square

integrable functionsψ(x, x′) which are antisymmetric in the electron variables(Ex ′
1, ...Ex ′

N ′).
Let Hcm ⊂ L2(R3(N+N ′−1)) be the Hilbert space of square integrable functions in relative
coordinates, antisymmetric with respect to permutations of the electrons(j ↔ j ′). Our
discussion below could also apply to a situation where some of the nuclei have to be treated
as identical particles (boson or fermions). We will callHcm (the Hilbert space of) the centre
of mass system.

In what follows, we will often identify operatorsBcm acting inHcm with operators acting
in H = Hcm ⊗ L2(R3), whereL2(R3) is the Hilbert space for the centre of mass motion
(see e.g. [19]). SinceV depends on the relative coordinates only, it defines a multiplication
operator onHcm. Therefore we have

H0 = H0,cm ⊗ 1 + 1 ⊗H ′
0

H = Hcm ⊗ 1 + 1 ⊗H ′
0

H(t) = Hcm(t)⊗ 1 + 1 ⊗H ′(t). (1)

It is well known (see e.g. [19]) thatH andHcm define self-adjoint operators. This is also
true forH(t),Hcm(t) andH ′(t) (see e.g. [20, 21] ). By definition, a bound state of the
system is an eigenstate ofHcm with eigenvalueE < 0. LetP be the orthogonal projection
on the subspace ofHcm spanned by the bound state eigenfunctions.

If S denotes the scattering operator for the pair (H(·),H) (see below), then we will see
that S decomposes asS = Scm ⊗ S ′, whereScm is the scattering operator inHcm for the
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pair (Hcm(·),H) andS ′ is the scattering operator for the pair(H ′(·),H ′
0) in L2(R3). The

ionization (probability) for a normalized bound stateψ ∈ Hcm is defined as

I (ψ) = ‖(1 − P)Scmψ‖2 = 1 − ‖PScmψ‖2. (2)

As mentioned in the introduction, this is a total ionization probability in the sense that it
does not distinguish between the different channels with continuous spectrum. To state the
results of this article, we need some further notation.

For given pulseE(t), we introduce the quantities

b(t) =
∫ t

0
E(s)ds

c(t) =
∫ t

0
b(s)ds = tb(t)−

∫ t

0
sE(s)ds

a(t) = 1

2

∫ t

0
b(s)2ds.

Also we introduce the time dependent vectors

x(t) = (Ex1(t), ..., ExN(t))
x′(t) = (Ex ′

1(t), ..., Ex ′
N ′(t))

with

Exi(t) = Exi − Qi

Mi

c(t)ez 1 6 i 6 N

Ex ′
j (t) = Ex ′

j + c(t)

m
ez 1 6 j 6 N ′

whereez is the unit vector in thez-direction. LetV (t) be the multiplication operator onH
given as

V (t)(x, x′) = V (x(t), x′(t)).

Again V (t) only depends on the relative coordinates and, therefore, also defines a
multiplication operator inHcm.

Finally pcm,z denotes thez-component of a certain momentum operator inHcm (defined
by relations (10), (12) and (13) below).

By µ we denote the mass parameter defined by

µ−1 =
N∑
i=1

Q2
i

Mi

+ N ′

m
− Q2

M
.

It is easy to see thatµ > 0.
Let E0 < 0 denote the infimum of the continuous spectrumσess(Hcm) (i.e. E0 is

the first ionization or fragmentation threshold). Also letE1 < 0 denote the supremum
of the discrete spectrumσd(Hcm) (which in particular cases can also be an ionization or
fragmentation threshold). We note that due to symmetry some of the eigenvalues ofHcm
can be embedded in the continuous spectrum. ThereforeE1 can be larger thanE0. For
example, in case of the helium atomE0 = −2 a.u., whereasE1 = −0.5 a.u.

We are now in a position to state our main result.

Upper bound.Let ψ ∈ Hcm be a normalized bound state ofHcm with energyE < 0. Then
the ionization satisfies an upper bound of the form

I (ψ)
1
2 6

∫ τ

0
‖(V (t)− V )ψ‖dt + |c(τ )| ‖pcm,zψ‖ + |b(τ)| ‖(z −QZ)ψ‖. (3)
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Alternatively for any pulseE(t) with 1/2µ · b(τ)2 < E0 − E one has

I (ψ)
1
2 6

∫ τ

0
‖(V (t)− V )ψ‖dt + |c(τ )| ‖pcm,zψ‖ + b(τ)

E0 − E − 1
2µb(τ)

2
‖pcm,zψ‖. (4)

Lower bound.Let ψ ∈ Hcm be a normalized bound state ofHcm with energyE < 0. Then
for any pulseE(t) with 1/2µ · b(τ)2 > E1 −E the ionization satisfies a lower bound of the
form

(1 − I (ψ))
1
2 6

∫ τ

0
‖(V (t)− V )ψ‖dt + 1

E − E1 + 1
2µb(τ)

2
‖(V (τ)− V )ψ‖

+ b(τ)

E − E1 + 1
2µb(τ)

2
‖pcm,zψ‖. (5)

In particular (5) proves the absence of stabilization.

Since the bounds (4), (5) have the same structure as those obtained in [4, 5], the
discussion and interpretation of (3)–(5) in relation to the issue of stabilization may be taken
over from there. Also, [12] will contain a more detailed discussion of the influence of pulse
shape. We only add a few remarks. FirstV (t) is again Kato bounded with respect toH0,cm.
Therefore,‖(V (t) − V )ψ‖ may be estimated independently ofE(t) and the first term in
(3)–(5) satisfies a bound of the form∫ τ

0
‖(V (t)− V )ψ‖dt 6 Cτ (6)

where the constantC depends on the energyE of the bound state, the chargesQi , the
massesMi andm. A precise form ofC is given in the Appendix. In particular for the
ionization bounds, obtained by replacing the left-hand side of (6) by the right-hand side, to
be nontrivial (i. e.6 1 and> 0 respectively) one has to have a pulse duration satisfying
τ < 1/C. The second term in (5) may be treated analogously. We will see below that
(z−QZ) defines an operator inHcm. Now ‖(z−QZ)ψ‖ is bounded due to the O’Connor–
Combes–Thomas theorem (see e.g. [22]) and

‖pcm,zψ‖ 6 c〈ψ,H0,cmψ〉 1
2

holds for a suitable constantc depending onm and theMi andQi . By the techniques used
in the Appendix, this leads to a bound of the form‖pcm,zψ‖ 6 C ′, whereC ′ is a new
constant depending again onE, Qi , Mi andm.

Many of the pulses discussed in the literature, for example linearly polarized
monochromatic light (possibly with a trapezoidal or sine-squared enveloping function) or
chirps, typically haveb(τ) 6= 0, such that the lower bound indeed becomes relevant (for a
more detailed discussion see [12]).

We turn to the proof of these bounds, which is an adaptation of arguments used in [3–5].
Let U(t, t ′) be the unitary time evolution for the HamiltonianH(t), i.e. U(t, t ′) satisfies

i∂tU(t, t
′) = H(t)U(t, t ′)

U(t, t ′)U(t ′, t ′′) = U(t, t ′′)
U(t, t) = 1

for all t, t ′, t ′′. The existence of these unitary operators can be established by arguments
similar to those used in [4], which extend results in [20, 21]. Since by assumptionE(t)
vanishes unless 06 t 6 τ , we obviously have

U(t, t ′) = exp−i(t − τ)H · U(τ, 0) · expit ′H
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for t > τ and t ′ < 0.
In analogy with scattering theory (see e.g. [5] for a more detailed discussion), one may

define the scattering matrix for the pair(H(·),H) as the weak limit

S = w − lim
t→+∞
t ′→−∞

exp itH · U(t, t ′) · exp−it ′H (7)

which, by (21) in the present situation, takes the form

S = exp iτH · U(τ, 0).

In particularS is unitary.
Let Ucm(t, t ′) andU ′(t, t ′) be the analogous time evolution operators for the operators

Hcm(t) andH ′(t) (see (9)), respectively.U ′(t, t ′) can be given explicitly (see e.g. [5]) and
is commonly referred to as the Gordon–Volkov solution [23]. By the last relation in (1) we
obviously have

U(t, t ′) = Ucm(t, t
′)⊗ U ′(t, t ′). (8)

In analogy to (7) we may define unitary operatorsScm and S ′ resulting from the pairs
(Hcm(t),Hcm) and(H ′(t),H ′

0), respectively. Thus we have

Scm = exp iτHcm · Ucm(τ, 0)

S ′ = exp iτH ′
0 · U ′(τ, 0). (9)

In particular the scattering matrixS ′ for the centre of mass motion can be given in closed
form and is nontrivial in general unlessQ = 0. By (1), (8) and (9) we have

S = Scm ⊗ S ′.

Now we invoke the unitary Kramers–Henneberger transformation. Suggested by its form
in the one-particle theory (see e.g. (11) below), consider the unitary operators onH given
as

T (t) = exp−ia(t)� · exp−ib(t)z · exp ic(t)pz.

Here� is a number given by

� =
N∑
i=1

Q2
i

Mi

+ N ′

m

andpz can be expressed through the canonically conjugated momentapi,z andp′
j,z of zi

andz′
j as

pz =
N∑
i=1

Qi

Mi

pi,z − 1

m

N ′∑
j=1

p′
j,z. (10)

Analogously we define the Kramers–Henneberger transformation for the centre of mass
motion as

T ′(t) = exp−ia(t)�′ · exp−ib(t)QZ · exp ic(t)
Q

M
Pz (11)

where�′ = Q2/M. Also Pz is thez-component of the momentum operatorEP canonically
conjugate toEX. Thus EP is nothing but the total momentum operator, i.e.

EP =
N∑
i=1

Epi +
N ′∑
j=1

Epj′ (12)
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such that we may writeH ′
0 = − 1

2M1 EX = EP 2

2M . Now let�cm = �−�′ and

pcm,z = pz − Q

M
Pz. (13)

As suggested by the notation,pcm,z defines an operator inHcm. The easiest way to see this
is to notice thatpcm,z commutes withEX and with EP , which is trivial. By similar arguments
z −QZ defines an operator inHcm. Therefore

Tcm(t) = exp−ia(t)�′ · exp−ib(t)(z −QZ) · exp ic(t)pcm,z

is a unitary operator inHcm and we have the desired tensor product decomposition

T (t) = Tcm(t)⊗ T ′(t). (14)

The relevance of these Kramers–Henneberger transformations is given by the following
property. LetU1(t, t

′), U1,cm(t, t
′) and U ′

0(t, t
′) be the time evolution operators for the

Hamiltonians

H1(t) = H0 + V (t)

H1,cm(t) = H0,cm + V (t) = H1(t)+ 1

2M
1 EX

andH ′
0, respectively. Then one has

U(t, t ′) = T (t)U1(t, t
′)T (t ′)−1

Ucm(t, t
′) = Tcm(t)U1,cm(t, t

′)Tcm(t ′)−1

U ′(t, t ′) = T ′(t)U ′
0(t, t

′)T ′(t ′)−1. (15)

Note that the relations (15) are compatible with the relations (8), (14) and

U1(t, t
′) = U1,cm(t, t

′)⊗ U ′
0(t, t

′)

as they should be.
Using (9) this gives in particular

I (ψ) = ‖(1 − P)Tcm(τ)U1,cm(τ, 0)‖2.

The bounds (3), (4) and (5) now follow the line of arguments given in [4] and [5] with the
following modifications. In place of the relations (3.11) and (3.28) in [5] we now use the
identities

exp ib(τ )z ·H · exp−ib(τ )z

=
N∑
i=1

1

2Mi

( Epi −Qib(τ)ez)
2 +

N ′∑
j=1

1

2m
( Epj′ + b(τ)ez)

2 + V

= H −
( N∑
i=1

1

Mi

Qi · pi,z − 1

m

N ′∑
j=1

p′
j,z

)
· b(τ)

+
( N∑
i=1

Q2
i

2Mi

+ N ′

2m

)
b(τ)2

and

exp ib(τ )QZ ·
EP 2

2M
· exp−ib(τ )QZ

= 1

2M
( EP −Qb(τ)ez)

2

=
EP 2

2M
− Q

M
Pz · b(τ)+ Q2

2M
b(τ)2
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such that

exp ib(τ )(z −QZ) ·Hcm · exp−ib(τ )(z −QZ) = Hcm − pcm,z · b(τ)+ 1

2µ
b(τ)2.

In particular these relations explain the origin of the mass parameterµ.
Similarly one derives

exp−ic(τ )pcm,z · exp ib(τ )(z −QZ) ·Hcm · exp−ib(τ )(z −QZ) · exp ic(τ )pcm,z

= H0,cm − pcm,z · b(τ)+ 1

2µ
b(τ)2 + V (τ)

= Hcm − pcm,z · b(τ)+ 1

2µ
b(τ)2 + V (τ)− V. (16)

With the help of these relations, the arguments in [4] and [5] may now be taken almost
verbatim to finish the proofs of (3), (4) and (5). As an example we now give the proof of
the lower bound (5). In order to obtain a lower bound on

I (ψ) = ‖(1 − P)Tcm(τ)U1,cm(τ, 0)ψ‖2 = 1 − ‖PTcm(τ)U1,cm(τ, 0)ψ‖2

it suffices to obtain an upper bound for‖PTcm(τ)U1,cm(τ, 0)ψ‖. First we write

‖PTcm(τ)U1,cm(τ, 0)ψ‖
= ‖P exp −ib(τ )(z −QZ) · exp ic(τ )pcm,z · U1,cm(τ, 0) · ψ‖
6 ‖P exp −ib(τ )(z −QZ) · exp ic(τ )pcm,z
× (
U1,cm(τ, 0)− exp −iτHcm

) · ψ‖
+‖P exp −ib(τ )(z −QZ) · exp ic(τ )pcm,z · ψ‖. (17)

The first term on the right-hand side is bounded by∥∥(
U1,cm(τ, 0)− exp −iτHcm

)
ψ

∥∥ . (18)

We now invoke Du Hamel’s formula to rewrite (18) as∥∥∥ ∫ τ

0
U1,cm(τ, t)[V (t)− V ] exp −i(τ − t)Hcm · ψ dt

∥∥∥. (19)

Now we use the unitarity ofU1,cm(τ, t) and the fact thatψ is an eigenstate ofHcm to
estimate (19) by∫ τ

0
‖(V (t)− V )ψ‖dt

which is the first term on the right-hand side of (5). The second term in (17) is treated as
follows. Let δ > E1 be arbitrary. The operatorP(Hcm − δ)−1 6 0 is well defined with
operator norm6 (δ − E1)

−1. Hence

‖P exp −ib(τ )z · exp ic(τ )pcm,z · ψ‖
= ‖P(Hcm − δ)−1(Hcm − δ) exp −ib(τ )z · exp ic(τ )pcm,z · ψ‖
6 1

δ − E1
‖(Hcm − δ) exp−ib(τ )z · expic(τ )pcm,z · ψ‖.

Now using the relation (16) we obtain

‖P exp −ib(τ )z · exp ic(τ )pcm,z · ψ‖
6 1

δ − E1
‖(V (τ)− V )ψ‖ + 1

δ − E1
‖(E − b(τ)pcm,z

+ 1

2µ
b(τ)2 − δ)ψ‖. (20)



Ionization of atoms and molecules 273

We now make the choice

δ = E + 1

2µ
b(τ)2

which by assumption onb(τ) is larger thanE1 and when inserted into (20) immediately
yields the remaining two terms, thus completing the proof of the lower bound.

We finally note that we may replaceP in (2) by the projectionPẼ onto the space
spanned by all states inHcm with energy smaller or equal tõE (Ẽ > 0). Then

IẼ(ψ) = ‖(1 − PẼ)Scmψ‖2

measures the ionization probability into the space of states with energy larger thanẼ. By
arguments similar to those used above one obtains an upper bound forIẼ(ψ) by replacing
E in (4) by E − Ẽ. This bound is valid under the restrictionb(τ)2/2µ < E0 + Ẽ − E.
Similary there is a lower bound forIẼ(ψ) obtained from (5) again by replacingE byE−Ẽ.
This bound now is valid under the restrictionb(τ)2/2µ > E1 + Ẽ − E. In particular for
ultra-short, ultra-intense fieldsE(t) with τ → 0 and|b(τ)| → ∞ the ionization probability
IẼ(ψ) tends to 1 for anỹE. This shows that the absence of stabilization is not a threshold
effect.

In conclusion we can say that, according to our arguments, multiparticle systems (like
atoms, molecules and ions) do not stabilize when exposed to short ultra-intense laser pulses
with large classical momentum transfer. For a more detailed discussion we again refer to
[5]. In fact our bounds are structurally similar to the one-electron case. The difference to
the one-electron case is that whereas in the one-electron case there is only one continuous
channel (i.e. ionization), there are several continuous channels (one-electron ionization,
multi-electron ionization, fragmentation and combinations thereof) in the multiparticle case
(several electrons and/or atoms). Our proof of absence of stabilization in this context means
the statement that the total transition probability to all these channels tends to one.
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Appendix

The aim of this appendix is to provide a bound on
∫ τ

0 ‖(V (t)−V )ψ‖dt for any normalized
bound stateψ . First we need the following fact for the Coulomb potential 1/|x| on the
one-particle Hilbert spaceL2(R3), which may easily be proven using theorems IX.28 and
X.15 in [24]. For any 0< ε < 1 and allφ ∈ L2(R3) in the domain of the Laplacean−1,
one has ∥∥∥∥ 1

|x|φ
∥∥∥∥ 6 ε‖ −1φ‖ + B(ε)‖φ‖

with

B(ε) = π221/4

ε3/2
+ 1. (A.1)
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We make use of this in the following way. For notational convenience we setQi = −1,
Mi = m, andxi = x ′

i−N for N + 1 6 i 6 N +N ′ such thatV takes the form

V =
∑

16i<i ′6N+N ′

QiQi ′

|Exi − Exi ′ | =
∑

16i<i ′6N+N ′
Vii ′ .

Also we introduce the reduced massesµii ′ (i 6= i ′) by

µ−1
ii ′ = 1

Mi

+ 1

M ′
i

.

This gives, forψ ∈ Hcm,

‖Vii ′ψ‖ 6 2ε|QiQi ′ |µii ′
∥∥∥∥− 1ii ′

2µii ′
ψ

∥∥∥∥ + B(ε)|QiQi ′ | ‖ψ‖

where1ii ′ is the Laplacean with respect to the relative coordinatexi − xi ′ (1 6 i < i ′ 6
N +N ′).

Since −1ii ′/2µii ′ 6 H0,cm and since these two operators commute, by the spectral
theorem we have

‖Vijψ‖ 6 2ε|QiQi ′ |µii ′ ‖H0,cmψ‖ + B(ε)|QiQi ′ | ‖ψ‖.
This gives

‖Vψ‖ 6 2ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖H0,cmψ‖ + B(ε)
∑

16i<i ′6N+N ′
|QiQi ′ | ‖ψ‖. (A.2)

SinceH0,cm commutes with the unitary transformation given by any shiftxi − xi ′ 7→
xi − xi ′ + a (a ∈ R3), we also have

‖V (t)ψ‖ 6 2ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖H0,cmψ‖ + B(ε)
∑

16i<i ′6N+N ′
|QiQi ′ | ‖ψ‖. (A.3)

Therefore (A.2) and (A.3) combined with the trivial estimate

‖H0,cmψ‖ 6 ‖(H0,cm + V )ψ‖ + ‖Vψ‖
give

‖(V (t)− V )ψ‖ 6 ‖V (t)ψ‖ + ‖Vψ‖
6 4ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖(H0,cm + V )ψ‖

+4ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖Vψ‖

+2B(ε)
∑

16i<i ′6N+N ′
|QiQi ′ | ‖ψ‖. (A.4)

In the same way (A.2) gives

‖Vψ‖ 6 2ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖(H0,cm + V )ψ‖

+2ε

( ∑
16i<i ′6N+N ′

|QiQi ′ |µii ′
)

‖Vψ‖

+B(ε)
∑

16i<i ′6N+N ′
|QiQi ′ | ‖ψ‖. (A.5)
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Now fix ε such that

2ε
∑

16i<i ′6N+N ′
|QiQi ′ |µii ′ = 1/2. (A.6)

Then (A.5) leads to

‖Vψ‖ 6 ‖(H0,cm + V )ψ‖ + 2B(ε)
∑

16i<i ′6N+N ′
|QiQi ′ | ‖ψ‖. (A.7)

With the choice (A.6) forε and hence forB(ε) (see (A.1)), the insertion of (A.7) into (A.4)
gives, for any normalized bound stateψ of Hcm = H0,cm + V with energyE, the estimate∫ τ

0
‖(V (t)− V )ψ‖dt 6 4τ

[
|E| +

( ∑
16i<i ′6N+N ′

|QiQi ′ |
)

·
(

21/4π2(∑
16i<i ′6N+N ′ |QiQi ′ |µii ′

)3/2 + 1

)]
.
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